

Mark Scheme (Results)

January 2012

GCE Statistics S2 (6684) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our **Ask The Expert** email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

January 2012
Publications Code UA030902
All the material in this publication is copyright
© Pearson Education Ltd 2012

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol / will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

General Principals for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2 + bx + c) = (x + p)(x + q), \text{ where } |pq| = |c|, \text{ leading to } x = \dots$$

$$(ax^2 + bx + c) = (mx + p)(nx + q), \text{ where } |pq| = |c| \text{ and } |mn| = |a|, \text{ leading to } x = \dots$$

2. Formula

Attempt to use <u>correct</u> formula (with values for a, b and c), leading to x = ...

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c, \quad q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

January 2012 6684 Statistics S2 Mark Scheme

Question Number	Scheme		S
1 (a)	$E(X) = \frac{9+3}{2} = 6$	B1	(1)
(b)	$Var(X) = \frac{(9-3)^2}{12} = 3$	M1A1	(2)
(c)	$P(X > 7) = (9-7) \times \frac{1}{6} = \frac{1}{3}$	M1A1	
(d)	$P(X < 6 X > 4) = \frac{P(4 < X < 6)}{P(X > 4)}$	M1A1	(2)
	$=\frac{\frac{2}{6}}{\frac{5}{6}}=\frac{2}{5}$	A1	
	$\frac{-}{6}$		(3) 8
	Notes		
(b)	M1 $\frac{(9-3)^2}{12}$ or $\frac{(9+3)^2}{12}$		
(c)	M1 $\frac{(9-7)}{6}$ or $1 - \frac{(7-3)}{6}$ or $\int_{7}^{9} \frac{1}{6} dx$ or $1 - \int_{3}^{7} \frac{1}{6} dx$ A1 Also acceptable $0.\dot{3}$, $0.3\dot{3}$ and awrt 0.333		
(d)	M1 $\frac{P(4 < X < 6)}{P(X > 4)}$ or $\frac{P(X < 6)}{P(X > 4)}$ or $\frac{\frac{2}{6}}{\frac{5}{6}}$ or $\frac{\frac{3}{6}}{\frac{5}{6}}$ or $1 - \frac{P(X > 6)}{P(X > 4)}$ or $\frac{6 - 4}{9 - 4}$ or $\frac{3}{5}$		
	A1 $\frac{P(4 < X < 6)}{P(X > 4)}$ or $\frac{\frac{2}{6}}{\frac{5}{6}}$ or $1 - \frac{P(X > 6)}{P(X > 4)}$ or $\frac{6 - 4}{9 - 4}$		
	An answer of $\frac{2}{5}$ gains all 3 marks.		
	$NB \le and \ge are accepted in the above formulae$		

Question Number	Scheme			
2	$H_0: p = 0.5$			
	$H_1: p > 0.5$		B1	
	<i>X</i> ~B(30,0.5)	Using correct Bin	M1	
	$P(X \ge 21) = 1 - P(X \le 20)$ = 1 - 0.9786	or $P(X \le 19) = 0.9506$ $P(X \ge 20) = 0.0494$	M1	
	= 0.0214	$CR X \ge 20$	A1	
	so significant/reject H ₀ /in Critical region			
	Evidence to suggest David's claim is incorrect or The weather forecast produced by the local radio is better than those achieved by tossing/flipping a coin			

Notes

 $1^{\text{st}} B1 \text{ for } H_0: p = 0.5$

 2^{nd} B1 for $H_1: p > 0.5$

SC If both hypotheses are correct but a different letter to *p* is used they get B1 B0. If no letter is used they get B0 B0.

1st M1 writing or using B(30,0.5)

One tail

 2^{nd} M1 for writing or using 1 - P($X \le 20$) or writing P($X \le 19$) = 0.9506 or P($X \ge 20$) = 0.0494. May be implied by correct CR.or probability = 0.0214

A1 for 0.0214 or CR $X \ge 20/X > 19$. **NB** $P(X \le 20) = 0.9786$ on its own scores M1A1

 3^{rd} M1 dependent on the 2^{nd} M1 being awarded. For a correct statement based on the table below. Do not allow non-contextual conflicting statements eg "significant" and "accept H_0 ". **Ignore comparisons**. 2^{nd} A1 for a correct contextualised statement. NB A correct contextual statement on its own scores M1A1.

	0.05	p < 0.05 or p > 0.95
3 rd M1	not significant/ accept H ₀ / Not in CR	significant/ reject H ₀ / In CR
2 nd A1	David's claim is correct	David's claim incorrect
	weather forecast produced by the local radio is	weather forecast produced by the local radio is
	no better than those achieved by	better than those achieved by tossing/flipping a
	tossing/flipping a coin	coin

Two tail

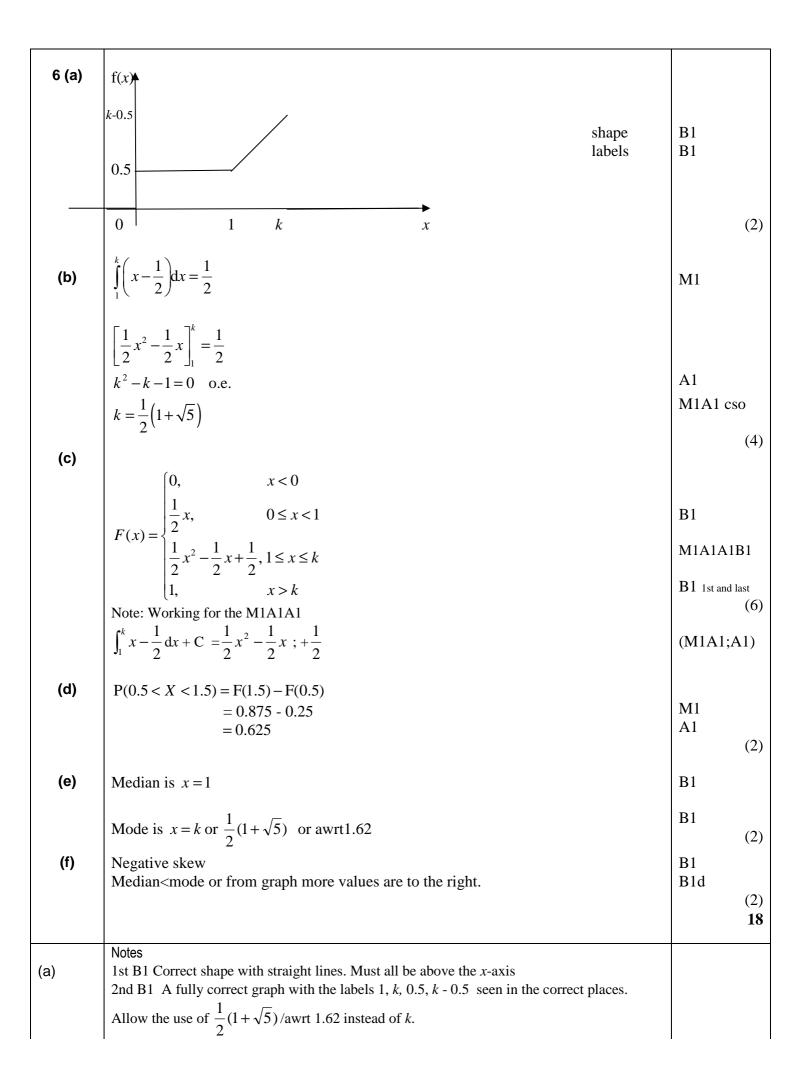
1st M1 for writing or using 1 - $P(X \le 20)$ or writing $P(X \le 20) = 0.9786$ or $P(X \ge 21) = 0.0214$. May be implied by correct CR. or probability = 0.197

A1 for 0.0214 or CR $X \ge 21/X > 20$. **NB** $P(X \le 20) = 0.9786$ on its own scores M1A1

 3^{rd} M1 dependent on the 2^{nd} M1 being awarded . For a correct statement based on the table below. Do not allow non-contextual conflicting statements eg"significant" and "accept H_0 ". **Ignore comparisons**.

 2^{nd} A1 for a correct contextualised statement. NB A correct contextual statement on its own scores M1A1.

	0.025	p < 0.025 or p > 0.975
3 rd M1	not significant/ accept H ₀ / Not in CR	significant/ reject H ₀ / In CR
2 nd A1	David's .claim is correct weather forecast produced by the local radio	David's claim incorrect weather forecast produced by the local radio
	is no better than those achieved by	is better than those achieved by
	tossing/flipping a coin	tossing/flipping a coin


_		
Question	Scheme	Marks

Number			
3 (a)	$P(X = 0) = 0.85^{10}$ or from tables	M1	
	= 0.1969 awrt 0.197	A1	(2)
(b)	$P(X > 3) = 1 - P(X \le 3)$	M1	(2)
	= 1 - 0.6477 $= 0.3523$ awrt 0.352	A1	
(c)	$n \times 0.15 = 5$	M1	(2)
(6)	n = 33 or 34	A1	
(d)	1 - P(X = 0) > 0.95	M1	(2)
	$1 - (0.85)^n > 0.95.$	A1	
	$0.85^n < 0.05$		
	$ \begin{array}{l} n > 18.4 \\ n = 19 \end{array} $	A1	
			(3) 9
	Notes		
(a)	M1 $(p)^{10}$ with 0		
(b)	M1writing or using 1 - P($X \le 3$)		
(c)	M1 $np = 5$ 0		
(d)	M1 writing or using $1 - P(X = 0) > 0.95$ or $P(X = 0) < 0.05$ (also accepted are $= \text{ or } \ge \text{ instead of } > \text{ and } = \text{ or } \le \text{ instead of } > \text{ or } = \text{ or } \ge \text{ instead of } > \text{ or } = \text{ or } \ge \text{ instead of } > \text{ or } = \text{ or } \ge \text{ instead of } > \text{ or } = \text{ or } \ge \text{ instead of } > \text{ or } = \text{ or } \ge \text{ instead of } > \text{ or } = \text{ or } \ge \text{ instead of } > \text{ or } > \text{ or } = \text{ or } \ge \text{ instead of } > \text{ or } > \text{ or } = \text{ or } \ge \text{ instead of } > \text{ or } > \text{ or } > \text{ or } = \text{ or } \ge \text{ instead of } > \text{ or } > \text$		
	NB an answer of 18.4 gets M1 A1 A0		
	An answer of 19 gets M1 A1 A1 unless it follows from clearly incorrect working.		

Question Number	Scheme		(S		
4 (a)	Poisson	B1	(1)		
(b)	Hits occur singly in time Hits are independent <u>or</u> Hits occur randomly Hits occur at a constant rate				
(c)	<i>X</i> ∼ Po(5)	B1			
	$P(X = 10) = P(X \le 10) - P(X \le 9)$ or $\frac{e^{-5} 5^{10}}{10!}$	M1			
	= 0.9863 - 0.9682 = 0.0181 awrt 0.0181	A1	(3)		
(d)	<i>X</i> ∼ Po(10)	B1	(3)		
	$P(X \ge 15) = 1 - P(X \le 14)$	M1			
	= 1 - 0.9165 = 0.0835 awrt 0.0835	A1	(3)		
(e)	X~ Po(50)	2.21	(-)		
	Approximated by N(50,50)	B1B1 M1M1			
	$P(X > 70) = P\left(Z > \frac{70.5 - 50}{\sqrt{50}}\right)$	WITIVIT			
	= P(Z > 2.899)	A1			
	=1-0.9981	M1			
	= 0.0019 awrt 0.0019	A1	(7)		
			(7) 16		
(b) (c)	Notes 1st B1 Any one of the 3 statements - no context required. NB It must be a constant (mean) rate and not a constant probability or a constant mean. 2nd B1 A different statement with context of hits. NB random and independent are the same statement. If only one mark awarded give the 1st B1. Never award B0 B1 B1 writing or using Po(5)				
(-)					
	M1 writing or using $P(X \le 10) - P(X \le 9)$ or $\frac{e^{-5} 5^{10}}{10!}$				
(d)	B1 writing or using Po(10) M1 writing or using 1- P($X \le 14$)				
(e)	1st B1 for a normal approximation 2nd B1 for correct mean and sd (may be seen in standardisation formula 1st M1 for attempting a continuity correction (71 ± 0.5) 2nd M1 Standardising using their mean and their sd and using [69.5, 70, 70.5, 71 or 71.5] allow ± z NB if they have not written down a mean and sd then they need to be correct in the standardisation to gain this mark.				
	1st A1 for $z = \pm$ awrt 2.9 or better. May be awarded for $\pm \frac{70.5 - 50}{\sqrt{50}}$				
	3rd M1 for 1 - tables value				
	SC using P(X<70.5/71.5) – P(X<69.5/70.5) can get B1B1 M0M1A0 M0A0				

5 (a) $X \sim B(120,0.075)$ Approximated by Po(9) $P(X > 3) = 1 - P(X \le 3)$ = 1 - 0.0212 = 0.9788	awrt 0.979	B1 M1A1 M1	
$P(X > 3) = 1 - P(X \le 3)$ $= 1 - 0.0212$	awrt 0.979		
$P(X > 3) = 1 - P(X \le 3)$ $= 1 - 0.0212$	awrt 0.979	M1	
	awrt 0.979		
= 0.9788	awrt 0.979		
		A1	(5)
(b) P(At least 4 defective components in each box) = $P(X>3) \times P(X>3)$		M1	(5)
$=0.9788^2$			
= 0.95804944	awrt 0.958	A1	(2)
			7
Notes	11/0 O 00 T		
(a) B1 Writing or use of B(120,0.075) may be implied by using Po(9) 1st M1 writing or use of Poisson	or N(9,8.325)		
1st A1 writing or use of Po(9)			
2nd M1 for writing or using 1- P($X \le 3$) or this may be implied by	an awrt 0.972		
using normal approximation.			
(b) M1 $((\text{their } (a))^2 \text{ or } 0.979^2 \text{ or } 0.9788^2 \text{ or } 0.98^2$			

Question	Scheme	Marks
Number		

(b)	1st M1 $\int_{1}^{k} x - \frac{1}{2} dx = 0.5$	
	or $\int_1^k x - \frac{1}{2} dx + 0.5 = 1$ ignore limits	
	or $\int_{1}^{k} x - \frac{1}{2} dx + \int_{1}^{k} \frac{1}{2} dx = 1$	
	or $\frac{1}{2}(k-0.5+0.5)(k-1) = 0.5$ or any correct method of finding the area	
	1st A1 for a quadratic equation in the form $a(k^2 - k - 1) = 0$ or $ak^2 - ak = a$. where a is a 2^{nd} M1 correct method for solving a quadratic of the form $ak^2 - bk + c = 0$ where a,b,c must be at least one correct step before the final answer. Allow substituting in k into a the form $ak^2 - bk + c = 0$.	$\neq 0$. There
	$2^{\text{nd}} \text{ A1 } \cos \text{ for } k = \frac{1}{2} (1 + \sqrt{5})$	
(c)	1st B1 for second line. Do not penalise the use of $<$ instead of \le and vice versa	
	M1 for use of $\int_1^k x - \frac{1}{2} dx + C$ ignore limits. For use they must have $x \to x^2$	
	1st A1 correct integration $\frac{1}{2}x^2 - \frac{1}{2}x$	
	$2nd A1 C = \frac{1}{2}$	
	NB M1A1A1 may be implied by correct 3rd line in $F(x)$	
	2nd B1 for 3rd line. Statement of the form $\frac{1}{2}x^2 - \frac{1}{2}x \pm C$. Do not penalise the use of < inste	ad of \leq and
	vice versa. Allow k or value of k. C may equal 0.	1
	3rd B1 for first and last line. Do not penalise the use of \leq instead of $<$ and \geq instead of $>$. Allow k or value of k	
(d)	M1 <u>Using</u> $F(1.5) - F(0.5)$. 1.5 must be put into the third line of the c.d.f. and 0.5 must be put into the second line of the c.d.f	
	or $\int_{0.5}^{1} \frac{1}{2} x dx + \int_{1}^{1.5} x - \frac{1}{2} dx$ need to attempt integration, at least one $x^n \rightarrow x^{n+1}$	
	or seeing $0.25 + 0.375$ or any correct method of finding the area (NB if they have not used $+ C$ or $C = 0$ they will get 0.125. This will get M1A0). An answer of 0.125 from an incorrect method gains M0 A0.	
(e)	If it is not clear which one is the mode and which one is the median assume the median is the	
(f)	first answer and mode the second. B1 negative/negative skew(ness). Do not allow negative correlation.	
	B1 dependent on previous B mark being awarded. Reason must follow from their values or diagram.	

Question Number	Scheme	Marks	
7 (a) (i)	The range of values/region/area/set of values of the test statistic that would lead you	B1	
	to <u>reject H</u> ₀		
(a) (ii)	The probability of incorrectly rejecting H_0 or	B1	
	Probability of rejecting H_0 when H_0 is true		(2)

i	•					,
(b) (i)	$X \sim Po(8)$				M1	
	$P(X \le 4)$	=0.0996				
	$P(X \le 3)$	=0.0424				
	Critical r	region [0,3]			A1	
(b) (ii)	awrt 0.04	124			B1	(3)
(c)	$H_0: \lambda = 1$	8 (or $\mu = 8$)			B1	
	$H_1: \lambda > 8$	8 (or $\mu > 8$)				
		$= 1 - P(X \le 12)$	or $P(X \le 1)$	3) = 0.9658	M1	
			or $P(X \ge 1)$	4) = 0.0342		
		= 1 - 0.9362				
		=0.0638	$CR X \ge 14$		A1	
	so insufficient evidence to reject H_0 /not significant/ not in critical region			M1 dep		
	There in		•	the <u>rate/number</u> of sales per	A1	
Nutra	month	or the estate agents cla	aim is incorrect			(5)
Notes	A 11		4 4 to to 12 to to	4		10
(a)(i)			t must be clear which hypo	othesis gets rejected/accepted.	ļ	
(ii)	-	ivalent wording.	1.11		i	
(b)		g or using Po(8). May be im				
			•	ed but not $P(X \le 3)$. This must be on it	s own.	
(c)	· -	potheses correct. Must use	λ or μ .			
	One tail	r writing or using 1 - P(Y /	12) or writing $P(Y \le 13) =$	0.9658 or $P(X \ge 14) = 0.0342$. May be	implied by	
	correct CR	A. or probability = 0.0638		•	implied by	
		$0.0638 \text{ or } X \ge 14. \text{ Allow } X > 14.$		on its own scores M1A1 atement based on the table below. Do not	ot allow nor	
		conflicting statements eg "r			ot allow hor	1-
	2 nd A1 for		ement. NB A correct conte	extual statement on its own scores M1A	1.	_
	2 nd M1	$0.05not significant/ accept H0/$	Not in CR	p < 0.05 or $p > 0.95significant/ reject H0/ In CR$		-
	2^{nd}A1	Insufficient evidence of ar		Sufficient evidence of an increase/cha	ange in the	
		<u>rate/number</u> of sales per		<u>rate/number</u> of sales per month		
	Two tail	1. D/W	10) :: P/V 14)	0.0007 D/WN15 0.0172 M 1	. 1. 1.	
		Lor probability = 0.0638	12) or writing $P(X \le 14) =$	0.9827 or $P(X \ge 15) = 0.0173$. May be	ітрпеа бу	
	A1 for 0.0	638 or $X \ge 15$. Allow $X > 14$				
		pendent on the 1 st M1 being conflicting statements eg "r		tement based on the table below. Do not	ot allow nor	1-
				extual statement on its own scores M1A	1.	
		0.025		p < 0.025 or p > 0.975]
	2^{nd} M1	not significant/ accept H ₀ /		significant/ reject H ₀ / In CR		
	2^{nd} A1	Insufficient evidence of an rate/number of sales per		Sufficient evidence of an increase/cha rate/number of sales per month	nge in the	
		- accordance of suics per		or sales per month		لــــــــــــــــــــــــــــــــــــــ

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UA030902 January 2012

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

